Table of Contents | About LEA | Page 1 | |---------------------------------------|--------| | 2010 Water Quality Summary Statistics | Page 2 | | LEA Service Area | Page 3 | | 2010 Volunteer Monitors and Interns | Page 4 | | A Year in the Life of a Lake | Page 5 | | The Three Layers of Lakes | Page 6 | | Water Testing Parameters | Page 7 | | Water Quality Classification | Page 8 | | 2010 as a Year | Page 9 | | Individual Lake Summaries | Page 9 | # Please join LEA! If you swim, boat, fish or simply believe Maine wouldn't be Maine without clear, clean lakes and ponds, please join the Lakes Environmental Association and protect Maine's lakes now and for future generations. Our lakes face serious threats, from erosion to invasive plants. Since 1970, LEA has worked to protect the lakes and ponds of Western Maine through water quality testing, watershed education and outreach programs. #### 37 lakes tested LEA protects water quality by helping landowners avoid problems such as erosion and by testing the waters of 37 lakes in Western Maine with help from volunteers and support from the Towns of Bridgton, Denmark, Harrison, Naples, Sweden and Waterford. #### LEA leads the milfoil battle Invasive aquatic plants, such as milfoil, are not native to Maine waters. Once they invade a lake or stream, they: - Spread rapidly and kill beneficial native plants. - Form dense mats of vegetation, making it difficult to swim, fish or boat. - Alter native fish habitats - Lower waterfront property values. #### Watershed education LEA offers environmental education programs to local schools, reaching roughly 500 students annually. Many more people enjoy nature at LEA's Holt Pond Preserve and others join in the Caplan Series of nature pro- # Landowner and Municipal Assistance LEA provides free technical assistance to watershed residents interested in preventing erosion on their property. This service, called the "Clean Lake Check Up" helps educate citizens about simple erosion control techniques and existing land use regulations. LEA also works with municipalities on comprehensive planning, natural resources inventories and ordinance development. Thousands of students have learned about watersheds on LEA's "Hey You!" cruises. You can become an LEA member with a donation of any amount. Just mail a check to LEA, 230 Main St., Bridgton, ME 04009 or join online at www.mainelakes.org. | 2010 water quality at a glance | | | | | | | | | | |--------------------------------|----------------------------|------------------------------|-----------------------|----------------------|-----------------------|-----------------------|-----------------------|-----------|-------------------------| | Lake | Surface
Area
(acres) | Watershed
Area
(acres) | Max.
Depth
(ft) | Av.
Secchi
(m) | Av.
Color
(SPU) | Av.
Chl-A
(ppb) | Av.
Phos.
(ppb) | Av.
PH | Degree
of
Concern | | ADAMS POND | 43 | 196 | 51 | 6.6 | 8 | 3.7 | 9.9 | 6.8 | High | | BACK POND | 62 | 584 | 33 | 7.0 | 8 | 1.8 | 5.4 | 6.8 | Avg/Mod | | BEAR POND | 250 | 5,331 | 72 | 5.9 | 13 | 2.9 | 9.3 | 6.8 | Avg/Mod | | BEAVER P. (Bridgton) | 69 | 1,648 | 35 | 6.3 | 22 | 5.0 | 8.0 | 6.7 | High | | BEAVER P. (Denmark) | 80 | 1,288 | 8 | 2.1 | 20 | 3.1 | 15 | 7.1 | Average | | BRANDY POND | 733 | 2,300 | 44 | 6.7 | 11 | 2.5 | 6.5 | 6.7 | Mod/High | | COLD RAIN POND | 36 | 505 | 36 | 5.2 | 16 | 3.6 | 8.0 | 6.9 | High | | CRYSTAL LAKE | 446 | 5,345 | 65 | 5.8 | 16 | 2.1 | 7.4 | 6.8 | High | | FOSTER POND | 149 | 1,090 | 28 | 7.6 | 5 | 1.7 | 7.0 | 6.7 | Average | | GRANGER POND | 125 | 642 | 28 | 6.3 | 8 | 2.7 | 7.3 | 6.8 | High | | HANCOCK POND | 858 | 2,222 | 59 | 7.1 | 11 | 3.2 | 5.9 | 6.7 | Mod/High | | HIGHLAND LAKE | 1,295 | 5,101 | 50 | 7.3 | 11 | 2.2 | 6.3 | 6.7 | High | | HOLT POND | 41 | 2,118 | 10 | 2.9 | 40 | 4.0 | 13.0 | 6.5 | Average | | ISLAND POND | 115 | 1,128 | 48 | 6.2 | 14 | 3.4 | 7.5 | 6.8 | Mod/High | | JEWETT POND | 43 | 638 | 41 | 4.6 | 20 | 13 | 12.0 | 6.7 | High | | KEOKA LAKE | 460 | 3,808 | 42 | 6.0 | 15 | 3.9 | 8.1 | 6.8 | Mod/High | | KEYES POND | 191 | 1,213 | 42 | 6.6 | 11 | 3.6 | 7.0 | 6.7 | Mod/High | | KEZAR POND | 1,851 | 10,779 | 12 | 2.6 | 30 | 4.4 | 18.0 | 6.8 | Average | | LITTLE MOOSE POND | 195 | 1,184 | 43 | 7.0 | 9 | 2.1 | 5.3 | 6.9 | Mod/High | | LITTLE POND | 33 | 633 | 13 | 4.2 | 16 | 2.6 | 9.0 | 6.7 | Avg/Mod | | LONG LAKE | 4,935 | 33,871 | 59 | 6.7 | 12 | 2.6 | 6.8 | 6.8 | High | | LONG POND | 44 | 217 | 20 | 4.9 | 15 | 4.0 | 9.0 | 6.7 | Average | | McWAIN POND | 445 | 2,505 | 42 | 6.2 | 14 | 2.3 | 6.5 | 6.7 | Mod/High | | MIDDLE POND | 72 | 231 | 50 | 5.9 | 12 | 2.7 | 5.4 | 6.8 | High | | MOOSE POND (Main) | 1295 | 7,258 | 70 | 7.4 | 10 | 2.4 | 4.8 | 6.8 | High | | MOOSE POND (North) | 323 | 10,462 | 20 | 5.6 | 9 | 3.1 | 12 | 6.7 | Moderate | | MUD POND | 45 | 1,661 | 35 | 3.9 | 26 | 2.9 | 16 | 6.6 | Moderate | | OTTER POND | 90 | 814 | 21 | 4.5 | 28 | 2.5 | 12 | 6.8 | Moderate | | PAPOOSE POND | 70 | 192 | 15 | 4.0 | 21 | 2.4 | 10 | 6.8 | Mod/High | | PEABODY POND | 740 | 2,522 | 64 | 7.6 | 11 | 2.2 | 6.4 | 6.8 | Mod/High | | PERLEY POND | 68 | 293 | 27 | 4.7 | 17 | 3.3 | 7.0 | 6.4 | Moderate | | PICKEREL POND | 17 | 290 | 18 | 5.3 | 23 | 2.0 | 5.0 | 6.5 | Average | | PLEASANT POND | 604 | 4,624 | 11 | 2.8 | 27 | 3.5 | 14 | 6.6 | Moderate | | SAND POND | 256 | 1,394 | 49 | 6.2 | 9 | 3.7 | 8.0 | 6.7 | High | | SEBAGO LAKE | 29,526 | 122,551 | 326 | 9.8 | 10 | 1.6 | - | 6.8 | Average | | STEARNS POND | 248 | 4,116 | 48 | 5.5 | 17 | 2.3 | 8.0 | 6.7 | Mod/High | | TRICKEY POND | 315 | 555 | 59 | 9.8 | 7 | 1.7 | 5.1 | 6.8 | Moderate | | WOODS POND | 462 | 3,229 | 29 | 5.2 | 24 | 2.8 | 8.0 | 6.6 | Average | Note: Secchi disk readings, color, chlorophyll-a, phosphorus and pH are yearly averages from epilimnetic surface cores. LEA would not be able to test the 37 lakes and ponds of this area without strong support from our surrounding community. Every year, we rely on volunteer monitors, lakefront landowners, summer interns and financial support from the Towns of Bridgton, Denmark, Harrison, Naples, Sweden, and Waterford to continue to collect and analyze lake water quality. Thank you for all your help! #### 2010 Volunteer Monitors and Lake Partners | Harold Arthur | Kokosing | Don Rung | |------------------------|---------------------------|---------------------------| | Richard and Andy Buck | Richard LaRose | Jane Seeds | | Camp Tapawingo | Long Lake Marina | Carolyn Stanhope | | Steve Cavicci | Bob Mahanor | Foster & Marcella Shibles | | Janet Coulter | Bob Mercier | Arthur and Jean Schilling | | Ken Forde | Richard and Daphne Meyer | Linda Shane | | Jean Forshay | Earl Morse | Bob Simmons | | Matt Foye | Naples Marina | Don & Pat Sutherland | | Joe and Carolee Garcia | Papoose Pond Campground | Bob & Ellen Tompkins | | Bill Grady | Barry & Donna Patrie | Larry and Jan Tuck | | Nelson Gouterman | Nancy Pike | Camp Wigwam | | Dick Johnson | Jean Preis | Rich & Nancy Worthington | | | Carol and Stan Rothenberg | | #### 2010 Water Testing Interns Kristy Garcia Amy Tragert Conrad Ward # A year in the life of a lake Winter is a quiet time. Ice blocks out the sunlight and also prevents oxygen from being replenished in lake waters because there is no wind mixing. With little light below the ice and gradually diminishing oxygen levels, plants stop growing. Most animals greatly slow their metabolism or go into hibernation. **Spring** is a period of rejuvenation for the lake. After the ice melts, all of the water is nearly the same temperature from top to bottom. During this period, strong winds can thoroughly mix the water column allowing for oxygen to be replenished throughout the entire lake. This period is called spring turnover. Heavy rains, combined with snow melt and saturated soils are a big concern in the spring. Water-logged soils are very prone to erosion and can contribute a significant amount of phosphorus to the lake. Every soil particle that reaches the lake has phosphorus attached to it. Summer arrives and deeper lakes will gradually stratify into a warm top layer and a cold bottom layer, separated by a thermocline zone where temperature and oxygen levels change rapidly. The upper, warm layers are constantly mixed by winds, which "blend in" oxygen. The cold, bottom waters are essentially cut off from oxygen at the onset of stratification. Cold water fish, such as trout and landlocked salmon, need this thermal layering to survive in the warm summer months and they also need a healthy supply of oxygen in these deep waters to grow and reproduce. Fall comes and so do the cooler winds that chill the warm upper waters until the temperature differential weakens and stratification breaks down. As in Spring, strong winds cause the lake to turn over, which allows oxygen to be replenished throughout the water column. # The three layers of lakes The critical element for understanding lake health is phosphorus. It's the link between what goes on in the watershed and what happens in the lake. Activities that cause erosion and sedimentation allow phosphorus from the land to be transported to the lake water. Phosphorus is a naturally occurring nutrient that's abundant on land but quite scarce in lake waters. Algae populations are typically limited by phosphorus concentrations in the water. But when more phosphorous comes into a lake, the added nutrients spur increases in algae growth. More algae growth causes the water to be less clear. Too much algae will also use up the oxygen in the bottom of the lake. When algae die they drift to the lake bottom and are decomposed by bacteria in a process that consumes the limited oxygen supply. If deep water oxygen levels get too low, cold water fish are unable to grow or reproduce. If there's no oxygen available at the bottom of a lake, another detrimental process called phosphorus recycling can occur. Phosphorus from sediments on the bottom become re-suspended in the water column. That doubles the lake's nutrient problem, since phosphorus is now coming from watershed as well as the lake itself. Lake Depth 0-30 feet 30-36 feet **Brook Trout** #### **Epilimnion** The warm upper waters are sunlit, wind-mixed and oxygen rich. Landlocked salmon #### Metalimnion This layer in the water column, also known as the thermocline, acts as a thermal barrier that prevents the interchange of nutrients between the warm upper waters and the cold bottom waters. Lake trout, also known as togue #### **Hypolimnion** In the cold water at the bottom of lakes, food for most creatures is in short supply, and the reduced temperatures and light penetration prevent plants from growing. Below 36 feet #### Water Quality Testing Parameters LEA's testing program is based on parameters that provide a comprehensive indication of overall lake health. Tests are done for transparency, temperature, oxygen, phosphorus, chlorophyll, color, conductivity, pH, and alkalinity. **Transparency** is a measure of clarity and is done using a Secchi disk. An 8 inch round disk divided into black and white quarters is lowered into the water until it can no longer be seen. The depth at which it disappears is recorded in meters. Transparency is affected by the color of the water and the presence of algae and suspended sediments. **Temperature** is measured at one-meter intervals from the surface to the bottom of the lake. This sampling profile shows thermal stratification in the lake. Lakes deep enough to stratify will divide into three distinct layers: the epilimnion, metalimnion, and hypolimnion. The epilimnion is comprised of the warm surface waters. The hypolimnion is made up of the deep, colder waters. The metalimnion, also known as the thermocline, is a thin transition zone of rapidly decreasing temperature between the upper and lower layers. Temperature is recorded in degrees Celsius. **Phosphorus** is a nutrient that is usually present in only small concentrations in the water column. It is needed by algae for growth and reproduction and can therefore give an indication of the potential for an algal bloom. Algal blooms caused by excess phosphorus loading can deplete dissolved oxygen levels in deep water. Phosphorus is measured in parts per billion (ppb). **Dissolved oxygen** is also measured at one-meter intervals from the surface to the bottom of the lake. Over the course of the summer, oxygen is depleted in the bottom waters through the process of decomposition of organic matter like dead algae. When there is excessive decomposition, all available oxygen is used up and coldwater fisheries are threatened. If dissolved oxygen concentrations are significantly depleted in bottom waters, a condition occurs which allows phosphorus to be released into the water column from bottom sediments. This is called phosphorus recycling and can cause increased algal growth to further deplete lake oxygen levels. During the fall, cooler temperatures and winds cause the lake to de-stratify and oxygen is replenished in the deep waters as the lake "turns over" and mixes. The same mixing of waters occurs in the early spring right after ice-out. Dissolved oxygen is measured in parts per million (ppm). **Chlorophyll-A** is a pigment found in algae. Chlorophyll sampling in a lake gives a measure of the amount of algae present in the water column. Chlorophyll concentrations are measured in parts per billion (ppb). Conductivity measures the ability of water to carry electrical current. Pollutants in the water will generally increase lake conductivity. Fishery biologists will often use measurements of conductivity to calculate fish yield estimates. Conductivity is measured in micro Siemens (µs). Color is a measure of tannic or humic acids in the water. These usually originate in upstream bogs from organic decomposition. Chlorophyll results are more important on lakes that are highly colored because phosphorus and transparency results in those lakes are less accurate. Color is measured in Standard Platinum Units (SPU). **pH** is important in determining the plant and animal species living in a lake because it reflects how acidic or basic the water is. **pH** is a measurement of the instantaneous free hydrogen ion concentration in a water sample. Bogs or highly colored lakes tend to be more acidic (have a lower pH). Alkalinity is a measure of the amount of calcium carbonate in the water and it reflects the ability of the water to buffer pH changes. In Maine lakes, alkalinity generally ranges from 4 - 20 parts per million (ppm). A higher alkalinity indicates that a lake will be able to withstand the effects of acid rain longer than lakes with lower alkalinity. If acidic precipitation is affecting a lake, a reduction in alkalinity will occur before a drop in pH. #### Water Quality Classification While all lakes are sensitive to land use and activities within their watershed, the health and longevity of some lakes is more precarious than others. LEA classifies lakes into categories based on their overall health and susceptibility to algal blooms. Lakes in the *Average Degree of Concern* category are those lakes that are not currently showing water quality problems that are likely a result of human activity. The *Moderate Degree of Concern* category describes lakes where testing shows routine dissolved oxygen depletion, elevated phosphorus levels or a potential for phosphorus recycling. The *High Degree of Concern* category is reserved for those lakes that routinely show signs of phosphorus recycling, have a cold water fishery that is regularly impacted by oxygen depletion or have had algal blooms in the past. The following criteria are used for reviewing transparency, phosphorus, chlorophyll and color data for each lake: | Transparency (m) in meters | | Phosphorus (ppb) in parts per billion | | Chlorophyll-A (p | | Color (SPU) Standard Platinum Units | | |----------------------------|-----------|---------------------------------------|-----------|------------------|-------------|-------------------------------------|-----------| | 10.0 + | excellent | less than 5.0 | low | less than 2.0 | low | less than 10.0 | low | | 7.1 - 10.0 | good | 5.1 - 12.0 | moderate | 2.1 - 7.0 | moderate | 10.1 - 25.0 | moderate | | 3.1 - 7.0 | moderate | 12.1 - 20.0 | high | 7.1 - 12.0 | high | 25.1 - 60.0 | high | | less than 3.0 | poor | 20.1 + | very high | 12.1 + | very high | 60.1 + | very high | An intern pours off a sample from a deep water grab to be analyzed later for phosphorus concentration. #### 2010 as a Year Ice-out and open water came very early in 2010, and this corresponded with stronger dissolved oxygen depletion in the bottom waters of some of the deeper lakes in the region. This is due to thermal stratification setting in earlier than usual, thus oxygen in the bottom waters is used up sooner in the season. Overall, however, 2010 was a fairly good year for most of the lakes within LEA's service area. More than 2/3rds of the lakes and ponds showed better than average clarity and more than 2/3rds showed lower than average phosphorus levels. The majority, but just under 2/3rds of lakes showed lower than average chlorophyll levels. This makes sense as, in general, lower nutrient levels (phosphorus) results in less algae growth (chlorophyll) and the results are better clarity. Hopefully, we will have another good year in 2011. #### **Individual Lake Summaries:** Back Pond - The 2010 average Secchi disk reading of 7.0 meters was deeper than the long-term average of 6.3 meters. Dissolved oxygen depletion occurred in the bottom 2 meters of the water column beginning in July. Phosphorus concentrations in the surface waters averaged 5.4 ppb, which was lower than the long-term average of 6.1 ppb. Phosphorus levels below the thermocline were high at 21 ppb. Average alkalinity was 10 ppm, above the long term average of 8 ppm and pH was 6.8, which is above the long term average of 6.7. Chlorophyll concentrations were 1.8 ppb, which is just under the long term average of 1.9 ppb. Conductivity was 17 µs, under the long term average of 21 µs. Average color of 8 SPU was under the long-term average of 15 SPU. Overall water quality appears stable on the pond. Back Pond remains in the AVERAGE/MODERATE degree of concern category. Surface Area: 62 acres Maximum Depth: 33 feet Watershed Area: 584 acres Elevation: 572 feet ## Back Pond Quick Statistics 2010 Average Verses the Long Term Average: Secchi : Better Chlorophyll: Better Phosphorus: Better Bear Pond - The 2010 Secchi disk average of 5.9 meters was deeper than the long-term average of 5.7. Oxygen depletion first appeared in the pond in July and continued throughout the rest of the sampling season in the bottom 3 to 4 meters of the water column. During the height of oxygen depletion, there was still ample cold and well oxygenated water available for cold water fish. Phosphorus concentrations in the upper waters averaged 9.3 ppb, which is slightly higher than the long-term average of 9.2 ppb. Phosphorus levels in the bottom waters of the pond were moderate and again averaged 9.4 ppb. Alkalinity was 10 ppm, which is above the long term average of 8 and pH was the same as it's long term average of 6.8. Chlorophyll levels were moderate at 2.9 ppb, which is lower than the long-term average of 3.6. Average color of 13 SPU was under the long term average of 19 SPU. Average conductivity was 27 μs, which was lower than the long-term average of 35 μs. Bear Pond again maintained a good volume of well-oxygenated, cold water below the thermocline. These conditions are needed to support a cold-water fishery. Bear Pond remains in the AVERAGE/MODERATE degree of concern category. Surface Area: 250 acres Maximum Depth: 72 feet Mean Depth: 34 feet Volume: 7,978 acres/feet Watershed Area: 5,331 acres Flushing Rate: 2.3 flushes per year Elevation: 375 feet Bear Pond Quick Statistics 2010 Average Verses the Long Term Average: Secchi : Better Chlorophyll: Better Phosphorus: Worse Island Pond - The 2010 Secchi disk average of 6.2 meters was deeper than the long-term average of 6.0. Dissolved oxygen depletion first appeared in late June near the bottom and intensified and expanded upward as the season continued. Phosphorus levels in the surface waters averaged 7.5 ppb, which is higher than the long-term average of 7.2 ppb. Phosphorus levels below the thermocline averaged 10.5 ppb. Alkalinity was 10 ppm, which is above the long-term average of 7 and pH was 6.8, which is above the long term average of 6.7. Conductivity averaged 30 μs, which was lower than the long term average of 40 μs. Chlorophyll averaged 3.4 ppb, which is above than the long-term average of 3.2 ppb. Color was 14 SPU, which is lower than the long term average of 18 SPU. Because of low oxygen conditions and periodically elevated phosphorus levels in the bottom waters, Island Pond is in the MODERATE/HIGH degree of concern category. Surface Area: 115 acres Maximum Depth: 48 feet Mean Depth: 16 feet Volume: 1,626 acres/feet Watershed Area: 1,128 acres Flushing Rate: 1.3 flushes per year Elevation: 448 feet Island Pond Quick Statistics 2010 Average Verses the Long Term Average: Secchi : Better Chlorophyll: Worse Phosphorus: Worse Jewett Pond - The 2010 Secchi disk reading of 4.6 meters was deeper than the long-term average of 4.3. Dissolved oxygen depletion was very pronounced during summer sampling. The phosphorus concentration above the thermocline was12 ppb, which is higher than the long-term average of 9.8 ppb. Alkalinity was 11 ppm, which is above the long term average of 6 ppm. Chlorophyll was 13 ppb, which is considerably higher than the long-term average of 5.1 ppb. Conductivity was 20 µs, below the long term average of 24 µs and color was 20 SPU, which is below the long term average of 33 SPU. pH was 6.7, which is above the long term average of 6.5. The low oxygen and high phosphorus conditions in the deeper waters are indicative of phosphorus recycling. For this reason, Jewett Pond remains in the HIGH degree of concern category. Surface Area: 43 acres Maximum Depth: 41 feet Watershed Area: 638 acres Elevation: 580 feet ### Jewett Pond Quick Statistics 2010 Average Verses the Long Term Average: Secchi: Better Chlorophyll: Worse Phosphorus: Worse **Keoka Lake -** The 2010 Secchi disk average of 6.0 meters was deeper than the long-term average of 5.9 meters. Dissolved oxygen depletion began to appear in the bottom waters of the pond in early June. As the summer continued, depletion progressed and consumed the bottom 5 to 6 meters of the water column. Phosphorus concentrations in the surface waters were moderate and averaged 8.1 ppb for the year, which is just under the long term average of 8.2 ppb. Phosphorus concentrations below the thermocline averaged 13.3 ppb. Alkalinity was 9 ppm, which is above the long term average of 8 ppm and pH was the same as the long term average of 6.8. Average chlorophyll was 3.9 ppb, which is above the long-term average of 3.7. Average conductivity was 27 μs, which is below the long term average of 18 SPU. Because of low oxygen conditions and periodically elevated phosphorus levels in the bottom waters, Keoka Lake is in the MODERATE/HIGH degree of concern category. Surface Area: 460 acres Maximum Depth: 42 feet Mean Depth: 25 feet Volume: 10,569 acres/feet Watershed Area: 3,808 acres Flushing Rate: 0.7 flushes per year Elevation: 492 feet ## Keoka Lake Quick Statistics 2010 Average Verses the Long Term Average: Secchi : Better Chlorophyll: Worse Phosphorus: Better Little Moose Pond - The 2010 Secchi disk average of 7.0 meters was less deep than the long-term average of 7.4 meters. Dissolved oxygen depletion was first observed in the bottom waters during early June sampling. As the season continued, the depletion became more severe and expanded up the water column. Phosphorus concentrations in the surface waters were moderate and averaged 5.3 ppb, which is under the long term average of 5.8 ppb. Phosphorus levels below the thermocline averaged 11.5 ppb. Alkalinity was 8 ppm, which is above the long term average of 6 ppm. pH readings average 6.9, which is above the long term average of 6.7. Chlorophyll levels averaged 2.1 ppb, which is below the long-term average of 2.3 ppb. Conductivity was 15 μs, which is below the long term average of 24 μs and color was 9 SPU, which is below the long term average of 11 SPU. Because of oxygen depletion and periodically elevated phosphorus values at depth, Little Moose remains in the MODERATE/HIGH degree of concern category. Surface Area: 195 acres Maximum Depth: 43 feet Mean Depth: 22 feet Volume: 4,010 acres/feet Watershed Area: 1,184 acres Flushing Rate: 0.6 flushes per year Elevation: 545 feet #### Little Moose Pond Quick Statistics 2010 Average Verses the Long Term Average: Secchi : Worse Chlorophyll: Better Phosphorus: Better McWain Pond - The 2010 Secchi disk average of 6.2 meters was slightly deeper than the long-term average of 6.0 meters for the pond. Dissolved oxygen depletion was first observed in the bottom waters in early June. Depletion continued and expanded up the water column for the rest of the summer. Phosphorus concentrations in the surface waters averaged 6.5 ppb, which is less than the long term average of 7.5 ppb. Below the thermocline, phosphorus concentrations were moderate at 8.7 ppb. Alkalinity was 8 ppm, which is above the long term average of 6 ppm and pH was the same as the long term average of 6.7. Chlorophyll concentrations were moderate at 2.3 ppb, which is lower than the long-term average of 3.1 ppb. Conductivity was 21 μs, which is under the long term average of 28 μs and color was 14 SPU for the year, which is under the long term average of 17 SPU. Because of dissolved oxygen depletion in the bottom waters, McWain Pond remains in the MODERATE/HIGH degree of concern category. Surface Area: 445 acres Maximum Depth: 42 feet Mean Depth: 23 feet Volume: 9,756 acres/feet Watershed Area: 2,505 acres Flushing Rate: 0.5 flushes per year Elevation: 533 feet ## McWain Pond Quick Statistics 2010 Average Verses the Long Term Average: Secchi: Better Chlorophyll: Better Phosphorus: Better **Middle Pond** - The 2010 Secchi disk average of 5.9 meters was deeper than the long-term average of 5.2 meters. Dissolved oxygen depletion was first observed in late June in the deeper waters of the pond. The depletion expanded up the water column and increased in severity as the season continued, impacting all but the top 5 meters of the water column. Phosphorus concentrations in the surface waters were moderate and averaged 5.4 ppb, which is below the long-term average of 7.9 ppb. Phosphorus concentrations below the thermocline were moderate to high, averaging 14.4 ppb. Alkalinity was 9 ppm, which is above the long term average of 6 ppm and pH was 6.8, which is above the long term average of 6.6. Chlorophyll concentrations were moderate and averaged 2.7 ppb, which is under the long-term average of 3.8 ppb. Conductivity was $15~\mu s$, which is under the long term average of $19~\mu s$ and color was 12~SPU for the year, which is under the long term average of 24~SPU. Although there is little development in the watershed, pronounced oxygen depletion and the potential for phosphorus recycling are real concerns for the pond. For this reason, Middle Pond remains in the HIGH degree of concern category. Surface Area: 72 acres Maximum Depth: 50 feet Watershed Area: 231 acres Elevation: 572 feet #### Middle Pond Quick Statistics 2010 Average Verses the Long Term Average: Secchi : Better Chlorophyll: Better Phosphorus: Better Mud Pond - The 2010 Secchi disk average of 3.9 was deeper than the long-term average of 3.4 meters. Dissolved oxygen depletion was again very pronounced this year. Low oxygen conditions limited most aquatic life to within 2 to 3 meters of the surface during August sampling. Phosphorus was 16.0 ppb, which is above the long-term average of 11.9 ppb on the pond. Alkalinity was 13 ppm, which is above the long term average of 5 ppm and pH was 6.6, which is above the long term average of 6.3. Chlorophyll was moderate at 2.9 ppb, which is under the long-term average of 5.4 ppb. Conductivity was 13 μs, which is below the long term average of 18 μs and average color was 26 SPU which is below to the long term average of 44 SPU. Water quality conditions in Mud Pond are most likely a result of the pond's large surrounding wetland complex. For this reason, the pond is in the MODERATE degree of concern category. Surface Area: 45 acres Maximum Depth: 35 feet Watershed Area: 1,661 acres Elevation: 572 feet Mud Pond Quick Statistics 2010 Average Verses the Long Term Average: Secchi : Better Chlorophyll: Better Phosphorus: Worse Papoose Pond - The 2010 Secchi disk average of 4.0 meters was deeper than the long-term average of 3.5 meters for the pond. Dissolved oxygen depletion was recorded in the bottom 2 meters of the water column during August sampling. Phosphorus was 10 ppb, which is below the long-term average of 14.0 ppb. Alkalinity was 13 ppm, which is above the long term average of 7 ppm. pH was 6.8, which is above the long term average of 6.6. Chlorophyll was 2.4 ppb, which is below the long term average of 6.5 ppb. Conductivity was 30 μs, which is below the long term average of 31 SPU. Due to high phosphorus concentrations and substantial shorefront development, Papoose Pond is in the MODERATE/HIGH degree of concern category. Surface Area: 70 acres Maximum Depth: 15 feet Watershed Area: 192 acres Elevation: 490 feet Papoose Pond Quick Statistics 2010 Average Verses the Long Term Average: Secchi : Better Chlorophyll: Better Phosphorus: Better